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Anomalous heat conduction in a one-dimensional ideal gas
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We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically
colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are
confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to
momentum-conserving lattices.
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Understanding the dynamical origin for the validity of th
Fourier law of heat conduction in deterministic on
dimensional particle chains is one of the oldest and m
frustrating problems in nonequilibrium statistical physi
@1–3#. Due to some very basic unresolved issues the prob
has been a source of many recent publications@4–9#. In the
absence of analytical results, these papers are mainly
ented towards a numerical analysis of the problem. Howe
due to the delicate nature of the questions under discuss
numerical results sometimes lead to different conclusio
This is the case, for example, of the one-dimensional~1D!
hard-point particles with alternating masses for which op
site conclusions have been reached@5,7,8#. This disagree-
ment is not extremely surprising since this system lies in
foggy region which separates clear, regular integrable s
tems from the totally chaotic, deterministic, motion. Inde
this system has a zero Lyapounov exponent and therefo
lacks the exponential local instability which characteriz
chaotic systems. On the other hand, it has been shown@10#
that such systems can exhibit Gaussian diffusive beha
and, more recently@11#, an example has been shown of
system with a zero Lyapounov exponent which, howev
obeys the Fourier law. From the point of view of a gene
theoretical understanding, the fact that the alternating m
problem lies in this critical region renders it particularly im
portant to establish, beyond any reasonable doubt, its
ducting properties. This is what we set out to do in t
present paper. In particular, we confirm the breakdown of
Fourier law and formulate a proper Green-Kubo formali
of momentum-conserving models on a lattice in terms
velocity-current correlation.

We consider a one-dimensional gas of interacting partic
with the Hamiltonian

H5 (
n50

N21

hn , hn5
pn

2

2mn
1V~qn112qn! ~1!

in the canonical coordinatesqn ,pn . The energy current from
site n to site n11 is defined asj n5$hn11 ,hn%, with the
Poisson bracket$ f ,g%5(n]pn

f ]qn
g2]qn

f ]pn
g, and satisfies

the continuity equation (d/dt)hn5$H,hn%5 j n2 j n21. In
particular, we focus our attention on the ideal gas mode
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elastically colliding particles,V(q.0)50,V(q,0)5`,
with alternating masses,m2n215m15Ar , m2n5m251/Ar ,
where the ratior 5m1 /m2 serves as a model parameter. W
have mainly considered the valuer 5(A521)/2; however,
all the reported numerical results have been checked also
several other values ofr (0,r ,1) where we found no
qualitative distinction.

We place our system ofN particles between two stochas
tic Maxwellian heat reservoirs at temperaturesTL and TR

~see@2# for a description of the reservoir model!. We chose
the temperatures of the reservoirs,TL51 and TR52, and
measure the long-time averaged heat current^J&
5 limt→`(1/t)*0

t dt8J(t8) versus the system sizeN, whereJ
5(1/N)(n51

N21 j n . We note that our definition of the lattic
current simply accounts for the energy transferred dur
collisions and, since particles cannot be exchanged with
baths, obviously gives the correct heat transfer between
baths. However, its equivalence to the ‘‘free particle’’ curre
j n5mnvn

3/2 used by some authors, e.g.@8#, which is con-
nected to the real space current densityj (x)5(nj nd(x
2qn) in the absence of collisions, is not obvious~see the
discussion in@9#!.

In order to ensure that our results are not affected by fin
size effects we have taken particular care in using an effic
numerical scheme which allows us to reach high N valu
Our algorithm, developed in Ref.@3#, searches in a partially
ordered tree~heap! of precomputed candidates pairs for th
next collision and, due to this, it requires only log2N com-
puter operations per collision. As a consequence, we w
able to simulate very long chains and we have obtain
reliably converged results for lattices with sizesN up to
30 000. Convergence has been controlled by checking
constancy of the finite-time-averaged heat curr
(1/t)*0

t dt8J(t8), and to this end simulations for the large
system sizes had to be carried on up to 1012 pair collisions. It
is also clear that convergence problems suggest to keep
away form ther values too close to one or to zero. Th
analysis made in@2# indicated that the range 0.15,r ,0.6
was the most effective in attenuating solitary pulses and
value r 50.2 was chosen. In the present paper we take
somehow ‘‘standard’’ choicer 5(A521)/2.
©2003 The American Physical Society03-1
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Validity of Fourier law implies the scalingJ}¹T}N21.
Our numerical results shown in Fig. 1 clearly demonstr
instead a different power-law behavior, namelyJ}N2a with
a'0.74560.005 over a very large range inN. We have also
found that the scaling exponenta does not change apprecia
bly with the mass ratior. For example, for ten times smalle
value of r the asymptotic scaling only sets in later~i.e., for
larger values ofN, see Fig. 1!. The possibility of a slow
convergence to the asymptotic value might be at the origin
the slightly different numerical values fora found in previ-
ous numerical experiments (a'0.65 by Hatano@5#, a
'0.83 by Dhar@7#!. Since the model under consideration
energy scaling we do not expect any dependence of the
ponenta on the reservoirs temperatures.

The above results therefore solve the existing controve
and clearly show that the alternating mass, 1D hard point
does not obey Fourier heat law. We turn now to the analy
of other quantities which, besides providing additional co
firmation of the above conclusions, illuminate interesting
pects of the heat conduction problem. A quantity of ma
interest is the internal local temperature profileTn

5^pn
2/mn& in the nonequilibrium steady state for the syste

placed in between the heat reservoirs. First we notice tha
temperature profile in the discrete index variablen is differ-
ent than the temperature profile in position variableqn @7#
since the inverse densitydq/dn5^qn112qn& is nonuniform
in nonequilibrium, in fact it is simply proportional to th
temperature due to the constancy of pressure@7#. Now, in the
case of Fourier law, the thermal conductivityk scales with
temperature likek}AT. Therefore, fromAT(dT/dn)dn/dq
5const one obtains the temperature profileTn

kin5@TL
1/2

1(TR
1/22TL

1/2)n/N#2. Extensive numerical simulation
showed~see Fig. 2! that the temperature profile in our mod
converges, for sufficiently largeN, to a well-defined scaling
function Tn

scal5 f (n/N) which is slightly, butsignificantly,
different from the kinetic temperature profileTn

kin . This is
another piece of evidence for the anomalous heat trans

FIG. 1. Time-averaged energy current of a system ofN particles
between heat baths at temperaturesTL51 andTR52 vs the sizeN,
at two different mass ratiosr 5m1 /m25(A521)/2 and r 5(A5
21)/20. The suggested scaling^J&}N2a with a50.745 is shown
for comparison.
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and for the nonvalidity of the Fourier law in our system.
should be remarked that the convergence to the tempera
profile predicted by kinetic theory observed in@7#, which has
indeed been considered as surprising by the author him
actually does not take place.

A standard theoretical analysis of transport laws is ba
on the Kubo formulas@12,13#. However, applicability of the
Kubo formula in momentum-conserving cases, i.e., for tra
lationally invariant systems like model~1!, is not very clear.
This is particularly critical in view of a recent claim@6# that
the Kubo formula diverges for a momentum-conserving l
tice with nonvanishing pressure. For this latter type of mo
els we have an additional difficulty in applying the Kub
formalism, namely, as we show below, the result depends
only on the temperature gradient, but also on other therm
dynamic properties of the initial nonequilibrium state—i.e
the isobaric case~constant pressure profile! or the isochoric
case~constant density profile!. There is noa priori argument
which favors either of these two options: the choice depe
on the specific physical situation of interest. For instance,
steady-state heat current simulation considered above~Figs.
1 and 2! is clearly described by the isobaric state. Since
want to consider both situations we need to revise the d
vation of the Kubo formula by following the time evolutio
of a general nonequilibrium initial state in an isolated syst
with periodic boundary conditionsqN[q01N,pN[p0. To
this end, we prepare the initial state in a local-equilibriu
state described by the inverse temperature profilebn and by
an additional thermodynamic potentialgn ,

rneq5Zneq
21expS 2(

n
bnhn2(

n
gn~qn112qn! D . ~2!

This ~small! additional term is necessary in order to equi
brate the pressure in the isobaric case. Notice thatgn is un-
determined up to an arbitrary additive constant due to
gauge invariance of the second term in Eq.~2!. In order to
determine the gradient of theg potential which is necessar

FIG. 2. Temperature profile forTL51, TR52, and different
sizesN from 800 to 12 800~dotted-dashed-solid curves!, as com-
pared to the Fourier law prediction~chain curve!.
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to keep the physical pressuref constant (n independent!, we
compute thegeneralized pressuref l

b lf l52
]

]a
lnZl~a!U

a50

, ~3!

Zl~a!5E e2(n (bnV(qn112qn1ad ln)2gn(qn112qn1ad ln))dqW .

By a simple trick, a shift of one variableql→ql1a in the
integralZl(a), we findZl(a)[Zl 21(a) and therefore

b lf l5b l 21f l 215const. ~4!

Writing the force as f52^V8(qn112qn)&neq5fn
1gn /bn , multiplying by bn , and taking the first difference
¹ f nª f n2 f n21 we obtain the required ‘‘gradient’’

¹gn5f¹bn . ~5!

In the following we consider two specific cases:~i! The
initial isochoric state witĥ qn112qn&neq5const. This is ob-
tained by settinggn[0. ~ii ! The initial isobaric state with
uniform pressure profile. This is obtained by specifying t
g-potential according to Eq.~5!. We note again that the iso
baric state~ii ! is the one which is relevant for the stead
nonequilibrium state of a system in contact with heat res
voirs. Carefully repeating the first few steps in the derivat
of the Green-Kubo formula~following Ref. @13#! we arrive at
the very general linear response formula

^A~ t !2A~ t0!&neq5E
t0

t

dt8K A~ t8!(
n

~¹bnj n1¹gnvn!L
eq

wherevn5q̇n are the particles’ velocities. In the last step w
have assumed that we are close to equilibrium (¹bn and
¹gn small! so that the right-hand side~RHS! can be evalu-
ated in the corresponding equilibrium state^&eq. Let us now
consider the periodic temperature profilebn5b
1e sin(2pkn/N), and compute the total heat that has be
transported in timet from warm to cold regions of the lattice,
namelyQ(t)5*0

t dt8Jk(t8), where

JkªN21(n50
N21cos~2pkn/N! j n .

InsertingQ for A and using Eq.~5! @case~i! is obtained by
formally settingf50] we obtain

^Q~ t !&neq5
2pe

N E
0

t

dt8~ t2t8!^Jk~ t !~Jk1fVk!&eq, ~6!

whereVkªN21(n50
N21cos(2pkn/N)vn . We see that the growth

of the transported heat^Q(t)&neq is given by the generalized
correlation function Ck(t)5CJJ(t)1fCJV(t), where
CJJ(t)5^Jk(t)Jk&eq and CJV(t)5^Jk(t)Vk&eq. In the isoch-
oric case~i! expression~6! reduces to the usual current a
tocorrelation function only. We note that an unusual form
the correlation function in Eq.~6! is due to our use of ‘‘non-
standard’’ lattice currentsj n .
01520
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In the case of Fourier law, we expect initial linear grow
^Q(t)&neq'ekt, while for theballistic heat transport we ex
pect quadratic growtĥQ(t)&neq}t2 ~this has been confirmed
numerically for the integrable gas of equal massesr 51).
However, in a generic system with momentum conservat
and nonvanishing pressurefÞ0, like our dimerized hard-
point gas, we find qualitatively different behavior in cases~i!
and ~ii !. For example, due to the result@6#, CJJ(t) has a
plateau}f2 and the transport is ballistic in the isochor
case, while in the isobaric case the second term,CJV(t),
compensates for the plateau and yields a much slower
crease of the transported heat. In this latter case, indepen
numerical computations of̂Q(t)&neq and ofCk(t) for N up
to 32 768 shown in Fig. 3 givê Q(t)&neq}tn with n
'1.255, which is still clearly superdiffusive, and direct
validate the formula~6!. In Fig. 4 we show the generalize
correlation functionCk(t) for k50 and k51 separately.
Note that the results fork51 exhibits some oscillations fo
longer times due to finite size effects, namely due to peri
icity of the lattice, whilek50 gives thespatially homoge-
neouscorrelation function which has the same long-time b
havior with weaker finite size effects@however, the casek
50 is not strictly related to the Kubo formula~6!#. We see
that in the time range whereC0(t) and C1(t) match, the
asymptotic decay is compatible withCk(t)}t2m with the
exponentm522n50.745 consistent with Eq.~6!, and sat-
isfying m5a.

These results can be interpreted in the following way.
the isochoric initial state the initial temperature gradie
drive the heat ballistically in terms of sound waves@6#. On
the other hand, in the isobaric initial state, we have den
gradients which drive the lattice heat current in the oppo
direction and almost exactly compensate for the effect
temperature gradients so that the net effect is a sub-balli

FIG. 3. Transported heatQ(t) in an isolated system of sizeN
52048 obtained by starting from a nonequilibriumisobaric initial
state ~circles! with e50.2. For comparison we show the corr
sponding equilibrium averaged Kubo-like expressions~6! for N
52048~dashed! and forN532768@solid curve, multiplied by 16 to
account for scalinĝ Q(t)&}1/N]. The dashed-dotted line has
slope 1.255 and gives the best fit in the range 20,t,2000. The
corresponding data for theisochoric case are shown in the inse
with the slope 2.
3-3
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but still superdiffusive, energy transport. In order to illustra
the mechanism of ballistic energy transport we show in F
5 the spatio-temporal current-current correlation funct
cj j (n,t)5^ j 0 j n(t)&eq which exhibits clear ballistic tongue
along the linesn56cst wherecs51.78.

In this paper we have discussed the thermal conduc
properties of a one-dimensional hard point gas with altern
ing masses. For the more general situation of momen
conserving systems on a lattice, we have discussed the
ergy redistribution in an isolated system starting from a n
equilibrium initial state and derived a Green-Kubo formu
which takes into account the velocity-current correlati

FIG. 4. The generalized time correlation function~see text!
computed with canonical average atb51 for two system sizesN
51024 andN58192 and for the zerothk50 ~dashed and solid
curves, respectively! and the firstk51 ~thin curve! spatial Fourier
mode. Note thet20.745 decay ~dashed line! in the range 20,t
,200 ~for N58192) whereas for longer times we see finite s
effects~e.g., we have periodic oscillations fork51 due to transver-
sals of sound waves!.
.
.
.
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function. We have presented an accurate numerical anal
made possible by a powerful integration scheme, which
lows us to establish definite convincing evidence that
system under consideration does not obey the Fourier
Moreover, by considering a typical mass ratior 5(A5
21)/2, we have found that the asymptotic scalings:~i!
steady-state heat current between heat baths^J&}N2a, ~ii !
heat transported within a nonequillibrium isobaric initi
state in an isolated system̂Q(t)&}t22a, and ~iii ! general-
ized current-velocity correlation in the equilibrium sta
Ck(t)}t2a, are described by just one exponenta50.745.
After this work has been completed, two references appea
reporting quite similar results@14#.
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FIG. 5. The spatio-temporal current-current correlation funct
cj j (n,t) at temperature 1/b51 on a lattice of sizeN51024 is
shown with 20 different shades of grayness spaced equidista
from 1024 to 4.0 in logarithmic scale. The zigzag solid line ind
cates the peak ballistic sound-wave contribution moving with a u
form sound velocitycs51.78.
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