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We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically
colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are
confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to
momentum-conserving lattices.
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Understanding the dynamical origin for the validity of the elastically colliding particles, V(g>0)=0,V(g<0)=o,

Fourier law of heat conduction in deterministic one-with alternating massesn,,_;=m;=r, My,=m,=1/r,
dimensional particle chains is one of the oldest and mosfhere the ratiac =m,/m, serves as a model parameter. We
frustrating problems in nonequilibrium statistical physicspaye mainly considered the value= (yV5—1)/2; however
[1-3]. Due to some very basic unresolved issues the problery;| he reported numerical results have been checked also for

has been a source of many recent publicati@ns9]. In the
absence of analytical results, these papers are mainly or
ented towards a numerical analysis of the problem. However
due to the delicate nature of the questions under discussio
numerical results sometimes lead to different conclusions
This is the case, for example, of the one-dimensigadl)

hard-point particles with alternating masses for which oppo

several other values of (0<r<1) where we found no
Hualitative distinction.

'’ We place our system dfl particles between two stochas-
Ht Maxwellian heat reservoirs at temperaturBs and Ty
(see[2] for a description of the reservoir mogleiWe chose
the temperatures of the reservoiflg,=1 and Tg=2, and

site conclusions have been reacH&q7,8. This disagree- Measure the long-time averaged heat currefil)
ment is not extremely surprising since this system lies in the=liM_..(1/t) [odt’ J(t') versus the system si2¢, whereJ
foggy region which separates clear, regular integrable sys=(1/N)=N"1j,. We note that our definition of the lattice
tems from the totally chaotic, deterministic, motion. Indeedcurrent simply accounts for the energy transferred during
this system has a zero Lyapounov exponent and therefore d¢ollisions and, since particles cannot be exchanged with the
lacks the exponential local instability which characterizespaths, obviously gives the correct heat transfer between the
chaotic systems. On the other hand, it has been sH@@h  baths. However, its equivalence to the “free particle” current
that such systems can exhibit Gaussian diffusive behavioy =m ;%2 used by some authors, e[@], which is con-

and, more recently11], an example has been shown of a acted to the real space current density)==S,j,8(x

system with a zero Lyapounov exponent which, however
obeys the Fourier law. From the point of view of a general
theoretical understanding, the fact that the alternating mass
problem lies in this critical region renders it particularly im-
portant to establish, beyond any reasonable doubt, its con-
ducting properties. This is what we set out to do in the

Fourier law and formulate a proper Green-Kubo formalism

'—(,) in the absence of collisions, is not obvio(see the
discussion i 9]).

In order to ensure that our results are not affected by finite
size effects we have taken particular care in using an efficient
numerical scheme which allows us to reach high N values.
Our algorithm, developed in Réf3], searches in a partially
ordered tregheap of precomputed candidates pairs for the

of momentum-conserving models on a lattice in terms of?€xt collision and, due to this, it requires only jgcom-

velocity-current correlation. puter operations per collision. As a consequence, we were
We consider a one-dimensional gas of interacting particledble to simulate very long chains and we have obtained
with the Hamiltonian reliably converged results for lattices with sizBsup to
30 000. Convergence has been controlled by checking the
N-1 p2 constancy of the finite-time-averaged heat current
H= 20 hy, h”:2rr: +V(dn+1—9n) (1) (Lk)[idt’I(t"), and to this end simulations for the largest
n= n

system sizes had to be carried on up t&?@ir collisions. It
is also clear that convergence problems suggest to keep far

in the canonical coordinateg, ,p, . The energy current from away form ther values too close to one or to zero. The
site n to siten+1 is defined ag,={h,.1,h,}, with the  analysis made if2] indicated that the range 0.£5<0.6
Poisson brackeftf,g} ==d, fdq 9—dq fd, 9, and satisfies was the most effective in attenuating solitary pulses and the
the continuity equation d/dt)h,={H,h,}=j,—j,_1. In  valuer=0.2 was chosen. In the present paper we take the
particular, we focus our attention on the ideal gas model osomehow “standard” choice= (\5—1)/2.
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FIG. 1. Time-averaged energy current of a systeri garticles
between heat baths at temperatufes-1 andTgr=2 vs the sizeN,
at two different mass ratios=m, /m,=(y5—1)/2 andr=(\5
—1)/20. The suggested scalifd)«N~* with «=0.745 is shown
for comparison.

Validity of Fourier law implies the scalingoc VTN,
Our numerical results shown in Fig. 1 clearly demonstrat
instead a different power-law behavior, namébyN ™« with
a~0.7450.005 over a very large range I We have also
found that the scaling exponeatdoes not change apprecia-
bly with the mass rati@. For example, for ten times smaller
value ofr the asymptotic scaling only sets in latée., for
larger values ofN, see Fig. 1 The possibility of a slow
convergence to the asymptotic value might be at the origin o,
the slightly different numerical values far found in previ-
ous numerical experimentsaf0.65 by Hatano[5], «
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FIG. 2. Temperature profile fol, =1, Tg=2, and different
sizesN from 800 to 12 80Qdotted-dashed-solid curvesas com-
pared to the Fourier law predictidigchain curve.

and for the nonvalidity of the Fourier law in our system. It
should be remarked that the convergence to the temperature

rofile predicted by kinetic theory observed[ifi, which has
ndeed been considered as surprising by the author himself,
actually does not take place.

A standard theoretical analysis of transport laws is based
on the Kubo formula$12,13. However, applicability of the
Kubo formula in momentum-conserving cases, i.e., for trans-
lationally invariant systems like modél), is not very clear.

his is particularly critical in view of a recent claifg] that

he Kubo formula diverges for a momentum-conserving lat-
tice with nonvanishing pressure. For this latter type of mod-
els we have an additional difficulty in applying the Kubo

~0.83 by Dhar{7]). Since the model under consideration is g5, 51ism. namely, as we show below, the result depends not
energy scaling we do not expect any dependence of the ey on the temperature gradient, but also on other thermo-

ponenta on the reservoirs temperatures.

dynamic properties of the initial nonequilibrium state—i.e.,

The above results therefore solve the existing controversyq isobaric case(constant pressure profiler theisochoric
and clearly show thgt the alternating mass, 1D hard point 98Sase(constant density profileThere is naa priori argument
does not obey Fourier heat law. We turn now to the analysighich favors either of these two options: the choice depends
of other quantities which, besides providing additional con-yp, the specific physical situation of interest. For instance, the
firmation of the above conclusions, illuminate interesting aSsteady-state heat current simulation considered akiigs.
pects of the heat conduction problem. A quantity of mainy ang 3 is clearly described by the isobaric state. Since we

interest is the internal local temperature profilg,

want to consider both situations we need to revise the deri-

_ 2 . e .
=(Pr/My) in the nonequilibrium steady state for the systemyation of the Kubo formula by following the time evolution
placed in between the heat reservoirs. First we notice that thgf 3 general nonequilibrium initial state in an isolated system

temperature profile in the discrete index variables differ-
ent than the temperature profile in position variable[7]
since the inverse densigg/dn=(q,,1—4d,) iS nonuniform

with periodic boundary conditiongy=qq+ N,py=Ppo- TO
this end, we prepare the initial state in a local-equilibrium
state described by the inverse temperature prgfil@and by

temperature due to the constancy of presgdteNow, in the
case of Fourier law, the thermal conductivityscales with
temperature likecc \T. Therefore, fromyT(d T/dn)dn/dq
=const one obtains the temperature profif&"=[T?
+(TH?>~TY)n/NJ2.  Extensive numerical simulations

Pneq:Zne%le[{_; Bnhn_; Yn(Ons1—0dn) |- (2

showed(see Fig. 2that the temperature profile in our model This (smal) additional term is necessary in order to equili-
converges, for sufficiently largd, to a well-defined scaling  prate the pressure in the isobaric case. Notice has un-

function TS?=f(n/N) which is slightly, butsignificantly
different from the kinetic temperature profiTEﬁ'”. This is

determined up to an arbitrary additive constant due to a
gauge invariance of the second term in E2). In order to

another piece of evidence for the anomalous heat transpodietermine the gradient of thg potential which is necessary
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to keep the physical pressugeconstant 1 independent we
compute thegeneralized pressure,

d
Bid=— %Inzl(a) , ©)

a=0
Z|(a) = J efEn (BnV(dn+1—dnt+ady)— Vn(qn+17qn+a‘sln))da_

By a simple trick, a shift of one variablg,—q,+a in the
integralZ,(a), we findZ,(a)=2,_,(a) and therefore

Bid=Bi-1¢-1=const. 4
Writing the force as ¢=—(V'(Un+1—0n))ne™ Pn

+ v,/ Bn, multiplying by 8,,, and taking the first difference

Vf,=f,—f,_1 we obtain the required “gradient”
Vya=¢VBn. 5

In the following we consider two specific casép: The
initial isochoric state Wit g+ 1 — 0n)neq= CONst. This is ob-
tained by settingy,=0. (ii) The initial isobaric state with
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FIG. 3. Transported he&(t) in an isolated system of siz¢
=2048 obtained by starting from a nonequilibriusobaric initial
state (circles with e=0.2. For comparison we show the corre-
sponding equilibrium averaged Kubo-like expressigfis for N
=2048(dashedand forN=32768[solid curve, multiplied by 16 to
account for scaling/Q(t))<1/N]. The dashed-dotted line has a
slope 1.255 and gives the best fit in the rangec2@2000. The

uniform pressure profile. This is obtained by specifying thecc_nrresponding data for thisochoric case are shown in the inset
y-potential according to Eq5). We note again that the iso- With the slope 2.

baric state(ii) is the one which is relevant for the steady
nonequilibrium state of a system in contact with heat reser
voirs. Carefully repeating the first few steps in the derivation

of the Green-Kubo formuléollowing Ref.[13]) we arrive at
the very general linear response formula

t
(A1) = A(to))neq= ft dt'<A<t'>E (VBnint+Vynvn)
0 n

eq

In the case of Fourier law, we expect initial linear growth
{Q(1))neq= €xt, while for theballistic heat transport we ex-
pect quadratic grovvthQ(t))neqoct2 (this has been confirmed
numerically for the integrable gas of equal massesl).
However, in a generic system with momentum conservation
and nonvanishing pressuig+0, like our dimerized hard-
point gas, we find qualitatively different behavior in cages
and (ii). For example, due to the resul], C;,(t) has a
plateaux ¢ and the transport is ballistic in the isochoric

wherev,,=q, are the particles’ velocities. In the last step we case, while in the isobaric case the second teOy,(t),

have assumed that we are close to equilibriviB{ and
Vv, small so that the right-hand sidé&RHS) can be evalu-
ated in the corresponding equilibrium stdjg,. Let us now
consider the periodic temperature profile8,=p

compensates for the plateau and yields a much slower in-
crease of the transported heat. In this latter case, independent
numerical computations qfQ(t))neqand of Cy(t) for N up

to 32 768 shown in Fig. 3 give(Q(t))ne<t” with v

+ e sin(2mkn/N), and compute the total heat that has been~1.255, which is still clearly superdiffusive, and directly

transported in timé from warmto cold regions of the lattice,
namelyQ(t) = [5dt’Ji(t'), where

J:=N"1=N"tcog 2mkn/N)j, .

InsertingQ for A and using Eq(5) [case(i) is obtained by
formally setting¢=0] we obtain

2me ('t
<Q(t)>neq:Wfodt,(t_t’)<Jk(t)(\]k+¢Vk)>eqa (6)

whereV,:=N"*=N"2cos(2rkn/N)v,. We see that the growth
of the transported hedQ(t)),eqis given by the generalized

correlation ~ function C,(t)=Cj;;(t)+ #Cy\(t), where
Cya(t) =(Ik(t) i) eq @and C;y(t) = (Ii(t) Vi)eq- In the isoch-

validate the formulg6). In Fig. 4 we show the generalized
correlation functionCy(t) for k=0 and k=1 separately.
Note that the results fok=1 exhibits some oscillations for
longer times due to finite size effects, namely due to period-
icity of the lattice, whilek=0 gives thespatially homoge-
neouscorrelation function which has the same long-time be-
havior with weaker finite size effecffhowever, the cask
=0 is not strictly related to the Kubo formul®)]. We see
that in the time range wher€y(t) and C,(t) match, the
asymptotic decay is compatible wit@,(t)oct™# with the
exponentu=2—r=0.745 consistent with Eq6), and sat-
isfying u=«.

These results can be interpreted in the following way. In
the isochoric initial state the initial temperature gradients
drive the heat ballistically in terms of sound wayjé&g. On

oric case(i) expression6) reduces to the usual current au- the other hand, in the isobaric initial state, we have density
tocorrelation function only. We note that an unusual form ofgradients which drive the lattice heat current in the opposite

the correlation function in E(6) is due to our use of “non-
standard” lattice currentg, .

direction and almost exactly compensate for the effect of
temperature gradients so that the net effect is a sub-ballistic,
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FIG. 5. The spatio-temporal current-current correlation function
0.01 cjj(n,t) at temperature B=1 on a lattice of sizeN=1024 is
1 10 100 shown with 20 different shades of grayness spaced equidistantly

t from 10 “ to 4.0 in logarithmic scale. The zigzag solid line indi-
cates the peak ballistic sound-wave contribution moving with a uni-

FIG. 4. The generalized time correlation functi¢see text  form sound velocityc,=1.78.

computed with canonical average @t 1 for two system sizebl
=1024 andN=8192 and for the zerothk=0 (dashed and solid function. We have presented an accurate numerical analysis,
curves, respectivelyand the firstkk=1 (thin curve spatial Fourier ~made possible by a powerful integration scheme, which al-
mode. Note thet™ %745 decay (dashed ling in the range 2&t  lows us to establish definite convincing evidence that the
<200 (for N=8192) whereas for longer times we see finite sizesystem under consideration does not obey the Fourier law.
effects(e.g., we have periodic oscillations fke=1 due to transver-  Moreover, by considering a typical mass raﬁg:(\/g

sals of sound waves —1)/2, we have found that the asymptotic scalings:

) o ) steady-state heat current between heat baths N~ ¢, (ii)
but still superdiffusive, energy transport. In order to illustratepq ot transported within a nonequillibrium isobaric initial

the mechanism of ballistic energy transport we _show in Figstate in an isolated systef®(t))=t2¢, and (iii) general-
5 the spatio-temporal current-current correlation functionizeq cyrrent-velocity correlation in the equilibrium state
Cjj(n,t)={(jojn(t))eq Which exhibits clear ballistic tongues C.(t)*t™ 7, are described by just one exponent 0.745.

along the lines=*+cgt wherec,=1.78. . After this work has been completed, two references appeared
In this paper we have discussed the thermal Cond“Ct'”erorting quite similar resultgl4].

properties of a one-dimensional hard point gas with alternat-

ing masses. For the more general situation of momentum This work was partially supported by the EU, Contract
conserving systems on a lattice, we have discussed the eNo. HPRN-CT-1999- 00163LOCNET network and by
ergy redistribution in an isolated system starting from a nonMURST (Prin 2000, Caos e localizzazione in Meccanica
equilibrium initial state and derived a Green-Kubo formula Classica e Quantistida T.P. was supported by the Ministry
which takes into account the velocity-current correlationof Science, Education and Sport of Slovenia.
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